A Method of Displaying Visible-light (VL) Images and/or Infrared (IR) Images

Background:

Many infrared cameras today produce an image (IR image) of a scene using only energy in the far-infrared portion of the electromagnetic spectrum, typically in the 8-14 micron range. Images obtained using these cameras assign colors or gray-levels to the pixels composing the scene based on the intensity of the IR radiation reaching the camera’s sensor elements. Because the resulting IR image is based on the target’s temperature, and because the colors or levels displayed by the camera do not typically correspond to the visible light colors of the scene, it can be difficult, especially for novice users of such a device, to accurately relate features of interest (e.g. hot spots) in the IR scene with their corresponding locations in the visible-light scene viewed by the operator. In applications where the infrared scene contrast is low, infrared-only images may be especially difficult to interpret.

An infrared scene is a result of thermal emission and, not all, but most infrared scenes are by their very nature less sharp compared to visible images which are a result of reflected visible light. For example, considering an electric control panel of an industrial machine which has many electrical components and interconnections, the visible image will be sharp and clear due to the different colors and well defined shapes. The infrared image may appear less sharp due to the transfer of heat from the hot part or parts to adjacent parts.

To address this problem of better identifying temperature spots of interest, some cameras allow the operator to capture a visible-light image (often called a “control image”) of the scene using a separate visible light camera built into the infrared camera. The FLIR ThermaCam.RTM. P65commercially available from FLIR Systems of Wilsonville, Oreg. is an example of such a camera. These cameras provide no capability to automatically align, or to merge the visible-light and infrared images in the camera. It is left to the operator to manually correlate image features of interest in the infrared image with corresponding image features in the visible-light image.

Alternatively, some infrared cameras employ a laser pointer that is either built into, or affixed to the camera. The FLIR ThermaCam.RTM. E65 commercially available from FLIR Systems of Wilsonville, Oregon is an example of such a camera. This laser pointer projects a visible point or area onto the target, to allow the user to visually identify that portion of the target scene that is being displayed by the infrared camera. Because the laser pointer radiation is in the visible spectrum, it is not visible in the infrared image. As a result, the laser pointer is of limited value in infrared cameras. This can be problematic when the location of a hot or cold spot is difficult to identify. For example, large industrial control panels often have many components that are similar in shape and packed tightly together. It is sometimes difficult to determine the exact component that is causing a thermal event, such as a hot spot in the infrared camera image.

Other infrared temperature measurement instruments may employ either a single temperature measurement sensor, or a very small number of temperature sensors arrayed in a grid pattern. Single point instruments typically provide a laser pointing system to identify the target area by illuminating the point or area viewed by the single temperature sensor element, e.g. Mikron M120 commercially available from Mikron Infrared Inc. of Oakland, N.J. Alternatively, some systems employ an optical system that allows the user to visually identify the point in the target scene that is being measured by the instrument by sighting through an optical path that is aligned with the temperature sensor, e.g. Mikron M90 commercially available from Mikron Infrared Inc. of Oakland, N.J. Instruments with more than one sensor element typically provide a very crude infrared image made up of a small number of scene pixels, each with a relatively large instantaneous field of view (IFOV), e.g. IRISYS IRI 1011 commercially available from Advanced Test Equipment of San Diego, Calif. It can be very difficult to accurately identify features of interest using such images.

It is often difficult to focus infrared images because the infrared images do not typically have sharp resolution. For example, because of heat transfer by multiple processes from hot locations to adjoining locations, the images do not always have sharp resolution. This makes focusing the infrared image user subjective. It is desirable to make the focusing of infrared images less subjective.

What is claimed:

  • A method of displaying visible-light (VL) images and/or infrared (IR) images, the method comprising: providing a camera having a VL camera module, an IR camera module, and a display, the VL camera module having a first field of view (FOV), the IR camera module having a second FOV different from the first FOV causing a parallax error; focusing the IR camera module on a target to create a focused second FOV; the focusing of the IR camera module registering at least a portion of the first FOV with the focused second FOV to correct the parallax error; and displaying an image of the registered first FOV, or the focused second FOV, or a blended image of the registered first FOV and the focused second FOV.
  • A method of displaying visible-light (VL) images and/or infrared (IR) images, the method comprising: providing a camera having a VL camera module and an IR camera module and a display, the VL camera module having a first field of view (FOV), the IR camera module having a second FOV different from the first FOV causing a parallax error, the VL camera module producing an image of the first FOV, the IR camera module producing an image of the second FOV; displaying at least portions of the images from the VL camera module and the IR camera module on the display; registering the images from the VL camera module and IR camera module on the display by displacing the images from the VL camera module and the IR camera module relative to each other until registered to correct the parallax error via a manual adjustment mechanism.
  • A camera producing visible and infrared images, the camera comprising: a visible camera module having a VL sensor array of pixels and VL optics; an IR camera module having an IR sensor array of pixels and IR optics, the IR sensor array of pixels having substantially fewer pixels than the VL sensor array of pixels; the VL camera module and the IR camera module being displaced from one another so that the IR and VL camera modules see a target scene from different views causing a parallax error; means for correcting the parallax error; and a display for concurrently displaying images from the IR camera module and the VL camera module such that the images register without parallax error.
  • Read the entire document.
Scroll to Top